Mathematics Competition Indiana University of Pennsylvania 1996

DIRECTIONS:

- 1. Please listen to the directions on how to complete the information needed on the answer sheet.
- 2. Indicate the most correct answer to each question on the answer sheet provided by blackening the 'bubble' which corresponds to the answer that you wish to select. Make your mark in such a way as to completely fill the space with a heavy black line. If you wish to change the answer, erase your first mark completely since more than one response to a problem will be counted wrong. Make no stray marks on the answer sheet as they may count against you.
- 3. If you are unable to solve a problem, leave the corresponding answer space blank on the answer sheet. You may return to it if you have time.
- 4. Avoid wild guessing since you are penalized for incorrect answers. If, however, you are able to eliminate one or more answers as being incorrect, the probability of guessing the correct answer is correspondingly increased. One-fourth of the number of wrong answers will be subtracted from the number of right answers. Therefore, guessing is discouraged. Due to the length of the test, you are not expected to finish it.
- 5. Use of pencil, eraser, and scratch paper only are permitted.
- 6. You will have 110 minutes of working time to do the 50 problems in the test. When time is called, put down your pencil and wait for additional instructions.

Do not turn this page until directed by the proctor to do so.

1.	Define an operation \odot on the real numbers by $x\odot y=x^2-xy$. The condition that is necessary to ensure that $x\odot y=y\odot x$ is:				
	(A) x = 0	(B) $x = y$	(C) $y = 0$	(D) $x = -y$	$(E) x^2 = y^2$
2.	In simplified for	$ \frac{2x^2 + x - 10}{3x^2 + 7x + 4} : $	$-\frac{x^2 - 3x + 2}{3x^2 + x - 4}$ is:		
	(A) 1 (I	$3) \frac{2x+5}{x+1}$	$(C) \frac{2x+5}{x-1}$	$(D) \ \frac{3x+4}{x-2}$	$(E) \ \frac{x-1}{x+1}$
0	A 1		c : 1 m		

- 3. A square has twice the perimeter of a circle. The ratio of the area of the square to the area of the circle is:
 - (A) 4 (B) π (C) $1/\pi$ (D) $16/\pi$ (E) none of these
- 4. The solution set of the equation

$$\frac{x-3}{3} - \frac{x-19}{4} = \frac{1-2x}{2}$$

is:

(A)
$$\{ \}$$
 (B) $\{0, -3\}$ (C) $\{-3\}$ (D) $\{1\}$ (E) none of these

- 5. If $x = \log_b 2$ and $y = \log_b 5$, then $\log_b \sqrt{12.5}$ is equal to:
 - (A) $(y^2 x)/2$ (B) $(x^2 y)/2$ (C) $(2y x)^{1/2}$ (D) y x/2 (E) none of these
- 6. A man leaves his home and drives to the beach at an average speed of 50 mph and returns home at an average speed of 30 mph. If the round trip takes 2 hours, the distance from home to the beach is:
 - (A) 100 miles (B) 40 miles (C) 37.5 miles (D) 33. $\overline{3}$ miles (E) 10 miles
- 7. If today were Tuesday, then 5387 days from now it would be:
 - (A) Tuesday (B) Thursday (C) Friday (D) Sunday (E) none of these

8.	If in the expression x^2y the values of x and y are each decreased by 20%, then the value of the expression is decreased by a factor of:				
	(A) 61/125	(B) 50%	(C) 64/125	(D) 60%	(E) none of these
9.	A 10 ft tall gira distance his feet		d the earth. The d	listance his head	travels exceeds the
	(A) 10π ft	(B) 1024 ft	(C) 20π ft	(D) 20 ft	(E) none of these
10.	For every positi	ve real number	x,		
			$\tan^{-1}(x) + \tan^{-1}($	1/x)	
	is:				
	(A) 1	(B) 0	(C) $\pi/2$	(D) x	(E) -1
11.	On the followin	g inequalities, t	the one that is not	equivalent to the	e others is:
	(A) $ -2x-7 $ (D) $0 < x < -7$		(B) $-7 < -2x - 7$ (E) $-7 < x < 0$	< 7	(C) $0 < -2x < 14$
12.	The expression	$\frac{\log_2 4 \log_4 3}{\log_3 5 \log_2 3} \text{ is } 0$	equal to:		
	(A) 0	(B) 1	(C) $\log_5 3$	(D) ln	2 (E) e
13.	If the ratio of 3.	x - 7y + 4 to 4	x + 3y + 12 is $1/3$,	then the ratio of	f x to y is:
	(A) $\frac{-18}{5}$	(B) $\frac{5}{18}$	(C) 2	(D) $\frac{24}{5}$	(E) none of these
14.	If 3127 ¹¹⁸⁵⁹ is m	nultiplied out, t	hen the units' digit	in the final proc	duct is:
	(A) 2	(B) 3	(C) 7	(D) 9	(E) none of these
15.	If $\sqrt{\frac{x}{y}\sqrt{\frac{y}{x}}\sqrt{\frac{x}{y}}}$	$=\left(\frac{x}{y}\right)^z$, then	z is:		
	(A) 1/8	(B) 1/4	(C) $3/4$	(D) 3/8	(E) none of these

	is increased by 25% and the height is decreased by 20%, then the volume:					
			ases by 20% of these	(C)	increases by $1/16$	
17.	17. If $f(x) = 3 - x^2$ and $h \neq 0$, then $\frac{f(x+2h) - 2f(x+h) + f(x)}{h^2}$					
	equals:					
	(A) -2 (B) $-2x$	(C) 1	(D) $\frac{3 - x^2 - 2xh}{h^2}$	$-3h^{2}$	(E) $6x - 3h$	
18.	3. The hypotenuse of a right triangle is 1 less than the sum of the legs. If the difference of the legs is 1, then the length of the longest leg is:					
	(A) $(1 + \sqrt{3})/2$ (B) (E) none of these	$(3+\sqrt{3})/2$	(C) $(3 - \sqrt{3})/3$	2	(D) $(2+\sqrt{2})/2$	
19.	9. Four pennies of diameter d are placed with their centers on the four corners of $d \times d$ square. The percentage of the area of the square covered by the pennies is:					
	(A) 60 to 70 (B) (E) none of these	70 to 80	(C) 80 to 90		(D) 90 to 100	
20.). The solution set of the inequality					
	$\frac{-3(x-1)(2-x)}{x(x^2+1)} \le 0$					
	is:					
	(A) $(0,1] \cup [2,\infty)$ (E) $(-\infty,0) \cup [1,2]$	3) (0,2]	(C) $(-\infty, 1]$	(D)	$(-\infty,0)\cup[2,\infty)$	
21.	$If \log_5(\log_4(\log_2 x)) = \log_4(\log_2 x)$	$\log_2(\log_5 y)) =$	$\log_2(\log_5(\log_4 z)) =$	0, the		

(C) 1065

(D) 1184

(E) none of these

to:

(A) 890

(B) 945

16. The volume of a right circular cylinder with radius r and height h is V. If the radius

	units) is:				
	(A) $3\pi r^2$	(B) $12r$	(C) $2r + r^2$	(D) 8r	2 (E) $8\pi r$
23.	The value of n	that will make th	he roots of the equ	uation	
		$(m^2 +$	$+1)x^2 - (m+2)x$	+1 = 0	
	purely imagina	ary is:			
	(A) -2	(B) -1	(C) 0	(D) 1	(E) 2
24.	time, then two	more buttons at more than once,	the same time,	and then one bu	pressed at the same atton. If no button inations that could
	(A) 3	(B) 14	(C) 30	(D) 50	(E) 120
25.	If k is a consta	nt, then the rema	inder upon dividi	$\log x^3 - 2kx^2 + x$	x + 1 by $x - 5$ is
	(A) 0	(B) $131 - 50k$	(C) 81	(D) -129 +	50k (E) k
26.	The value of k	that satisfies the	equation $\log_{10} 25$	$= k \log_{100} 25 \text{ is:}$	
	(A) 1/2	(B) 2	(C) 3	(D) 3/4	(E) none of these
27.	If $\tan^{-1} x = x$	$-\frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} +$	$\cdots \text{for } x \le 1,$	then one can sho	w that π is:
	(A) 3.14 (D) $4\left(1 - \frac{1}{3} - \frac{1}{3}\right)$	$+\frac{1}{5}-\frac{1}{7}+\cdots$	(B) 22/7 (E) none of th		$-\frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$
28.	If the equation	$x^2 + 2dx + b = 0$	has exactly one s	olution, then thi	s solution is:
	(A) -1	(B) $\frac{b}{2a}$	(C) $\frac{-b}{2a}$	(D) $-d$	(E) none of these

22. A circle with radius r units is tangent to sides AB, AD, and CD of rectangle ABCDand passes through the midpoint of diagonal AC. The area of the rectangle (in square 29. An equilateral triangle is formed from four equilateral triangles as shown. If the area of one small triangle is $10\sqrt{3}$ square feet, then the perimeter of the large triangle is:

(C) $12\sqrt{10}$ ft

(D) $6\sqrt{3}$ ft

(E) none of these

30. An equation of the line that passes through the points of intersection of the graphs of $y = 2x^2 + 3x + 4$ and $y = 14 + 8x - 3x^2$ is:

(A)
$$y = 5x + 8$$

(B)
$$y = -5x + 2$$
 (C) $y = 9x + 1$ (D) $y = -9x - 9$

(C)
$$y = 9x + 1$$

(D)
$$y = -9x - 9$$

- (E) none of these
- 31. If f(x) = 3x + 4 and g(x) = 1/x, then $(g \circ f)^{-1}(x)$ equals:

$$(A) \ \frac{1-4x}{3x}$$

(B)
$$\frac{x-4}{3}$$

(C)
$$\frac{3}{x-4}$$

(D)
$$\frac{1}{x}$$

- (A) $\frac{1-4x}{3x}$ (B) $\frac{x-4}{3}$ (C) $\frac{3}{x-4}$ (D) $\frac{1}{x}$ (E) none of these
- 32. In $\triangle ABC$, F is the midpoint of \overline{AC} , D is the midpoint of \overline{AB} , and E is the midpoint of \overline{AD} . If the area of $\triangle BEF$ is 100 square units, then the area of $\triangle ABC$ in square units is:

(B) $100\sqrt{2}$

(C) $216\sqrt{3}$

(D) 244

(E) none of these

- 33. The solution set of the inequality $\frac{3x-5}{2x+1} \le 1$ is:
 - (A) $\{x \mid -1/2 < x \le 6\}$

(B) $\{x \mid 0 \le x < 5\}$

(C) $\{x \mid -1/2 \le x \le 5/3\}$

(E) $\{x \mid x \le -1/2 \text{ or } x > 6\}$

(D) $\{x \mid 3/2 < x < 6\}$

- 34. The values of a that satisfy the equation $\log_4\left(\frac{3}{2}a^2 + \frac{3}{2}a 2\right) = 2$ are:
 - (A) $\frac{-3/2 \pm \sqrt{12}}{3}$
- (B) -4,5 (C) $\frac{-3/2 \pm \sqrt{3}}{2}$
- (D) ± 5

- (E) none of these
- 35. If $2x + \sqrt{x} = 1$, then x:
 - (A) can have either of two different values
- (B) is an integer
- (C) is irrational

- (D) is rational but not an integer
- (E) is imaginary
- 36. A box contains chips, each of which is red, white, or blue. The number of blue chips is at least one third the number of white chips and at most one fourth the number of red chips. The number that are white or blue is at least 65. The minimum number of red chips possible is:
 - (A) 45
- (B) 54
- (C) 68
- (D) 76
- (E) none of these

- 37. Let $x \ge 0$ and suppose $x^{x^{x^{x^{*}}}} = 2$, then x equals:
 - (A) $\sqrt{2}$
- (B) 0
- (C) 2
- (D) 1/2
- (E) ln 2

- 38. If $4^{2x} + 16 = 17 \cdot 4^x$, then the value of $x^2 + 2x + 5$ is:
 - (A) 2
- (B) 5
- (C) 0 or 2
- (D) 5 or 13
- (E) none of these
- 39. A regular octagon and a regular pentagon are positioned as shown. The measure of $\angle ABC$ is:
 - (A) 31.5°
 - (B) 30°
 - $(C) 27^{\circ}$
 - (D) 22.5°
 - (E) none of these

- 40. A parabola with equation $y = ax^2 + bx + c$ has vertex (3,1) and passes through the point (2,0). Then the product abc equals:
 - (A) 60
- (B) -60
- (C) 48
- (D) -48
- (E) none of these

	(A) m/n	(B) n/m	(C) $3n/m$	(D) $n/2m$	(E) none of these
42.	If p is prime a	and if both of	the zeros of x^2	+px - 78p are integer	ers, then:
	(A) $0(E) none of t$	` ′	10	(C) 20	(D) 30
43.	where P is or C . (A and C	a side AB an are opposite	d 4 inches from vertices.) The p	A and Q is on side C berpendicular bisector	segment PQ is drawn CD and 3 inches from or of PQ is drawn and ratio of segment MX
	(A) 5:12	(B) 5:13	(C) 12:1	3 (D) 13:11	(E) none of these
44.			has equally like of ten with the	· •	s of 1, 2, 3, 4, 5, 6. The
	(A) $\frac{5}{72}$	(B) $\frac{7}{72}$	(C)	$\frac{25}{216} \tag{D}$) $\frac{1}{8}$ (E) $\frac{1}{6}$
45.	If x , y , and z	are assumed	to be positive ar	nd	
			yz = a(xz = a(xz = a(xz + 2yz + 2yz + a(xz + 2yz + a(xz + a(x + a(xz +	2z + x) 2x + 2y)	
	then the value	$e ext{ of } x ext{ is:}$			
	(A) 1	(B) 2	(C) $\sqrt{5}$	(D) 3 (E) un	able to be determined
46.	The solution s	set for the eq	uation $x^{\log_{10} x} =$	100x is:	
	(A) {100}	(B) ∅	(C) $\{1/100\}$	(D) $\{.01, 10\}$	(E) none of these
47.	set contains of each set is two	ne more elen o more than	nent than the pre-	eceding one and whe of the preceding set.	$\{0, 12\}, \ldots, \text{ where each ere the first element in Let } S_n \text{ be the sum of } S_n be$
	(A) 2226	(B) 9282	(C) 10,164	(D) 12,422	(E) none of these

41. The value of k that satisfies the equation $\log_{100} \sqrt[m]{a^n} = k \log_{1000} a$ is:

48. The number of real solutions of the equation

$$\sqrt{x-4} + \sqrt{x+4} = \sqrt[3]{12x+4}$$

is:

(A) 0

(B) 1

(C) 2

(D) 3

(E) infinite

49. The area in square units of a rhombus for which one side has length 10 units and the diagonals differ by 4 units is:

(A) 27

(B) 49

(C) 64

(D) 88

(E) 96

50. The value $\cos(\pi/24)$ is:

(A) $\sqrt{\frac{1+\pi}{24}}$ (B) $\frac{\sqrt{3}}{2}$ (C) $\frac{\sqrt{2+\sqrt{3}}}{2}$ (D) $\frac{\sqrt{3+\sqrt{2+\sqrt{2}}}}{3}$

(E) $\frac{\sqrt{2+\sqrt{2+\sqrt{3}}}}{2}$

Answer Key

1. E	18. B	35. D
2. B	19. B	36. C
3. B	20. E	37. A
4. C	21. C	38. D
5. D	22. D	39. A
6. C	23. A	40. C
7. E	24. C	41. E
8. A	25. B	42. B
9. C	26. B	43. D
10. C	27. D	44. D
11. D	28. D	45. B
12. C	29. C	46. E
13. D	30. A	47. B
14. B	31. A	48. B
15. D	32. A	49. E
16. A	33. A	50. E
17. A	34. E	