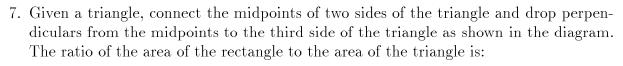

Mathematics Competition Indiana University of Pennsylvania 1999

DIRECTIONS:

- 1. Please listen to the directions on how to complete the information needed on the answer sheet.
- 2. Indicate the most correct answer to each question on the answer sheet provided by blackening the 'bubble' which corresponds to the answer that you wish to select. Make your mark in such a way as to completely fill the space with a heavy black line. If you wish to change the answer, erase your first mark completely since more than one response to a problem will be counted wrong. Make no stray marks on the answer sheet as they may count against you.
- 3. If you are unable to solve a problem, leave the corresponding answer space blank on the answer sheet. You may return to it if you have time.
- 4. Avoid wild guessing since you are penalized for incorrect answers. If, however, you are able to eliminate one or more answers as being incorrect, the probability of guessing the correct answer is correspondingly increased. One-fourth of the number of wrong answers will be subtracted from the number of right answers. Therefore, guessing is discouraged. Due to the length of the test, you are not expected to finish it.
- 5. Use of pencil, eraser, and scratch paper only are permitted.
- 6. You will have 110 minutes of working time to do the 50 problems in the test. When time is called, put down your pencil and wait for additional instructions.

Do not turn this page until directed by the proctor to do so.

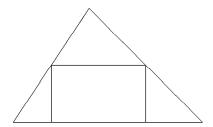


- (A) 0.75 ft^2
- (B) 2.25 ft^2
- (C) 3 ft^2
- (D) 4.5 ft^2
- (E) 9 ft^2
- 2. There are five students in a class that achieved a mean score of 78 on its first test. If the first four students had a mean of 73, then the score of the fifth student was:
 - (A) 73
- (B) 98
- (C) 92
- (D) 78
- (E) none of these
- 3. Suppose you have four Scrabble tiles with the letters "D", "R", "E", and "E". If you randomly place the tiles in a row, then the probability that you will spell the word DEER is:
 - (A) 1/12
- (B) 1/24
- (C) 1/6
- (D) 1/4
- (E) 1/8

- 4. The expression $\sqrt{a^2 2ab + b^2}$ is equal to:
 - (A) a b

- (B) b a (C) |b a| (D) $(a b)^2$
- (E) none of these

- 5. The expression $(1 \sin^2 A)(1 + \tan^2 A)$ is equal to:
 - (A) $\cos^2 A$
- (B) $\cot^2 A 1$
- (C) 1
- (D) 0
- (E) none of these
- 6. Of the following statements, the only one that is not true is:
 - (A) If $x \in \mathbb{R}$, then $|x| = \sqrt{x^2}$.
 - (B) If x and y are positive real numbers, then $\sqrt{xy} \le \frac{x+y}{2}$.
 - (C) If $x, y \in \mathbb{R}$, then $|x + y| \le |x| + |y|$.
 - (D) If $x \in \mathbb{R}$, then $-|x| \le x \le |x|$.
 - (E) If $x^2 = y^2$, then x = y.



(B) 1/4

(C) 1/2

(D) impossible to determine

(E) none of these

8. The solution set of the inequality
$$\frac{(x-2)^2}{x-5} \ge 0$$
 is:

(A)
$$\{x \mid x = 2 \text{ or } x > 5\}$$

(B)
$$\{x \mid x = 2 \text{ or } x = 5\}$$

(C)
$$\{x \mid 2 \le x < 5\}$$

(D)
$$\{x \mid x \le 2 \text{ or } x > 5\}$$

9. The first three terms of an arithmetic progression are 2x-3, 2x+3, 4x+5, in that order. The value of x is:

$$(A) -3$$

$$(C)$$
 3

10. A solution for the equation
$$\log_3(x+1) - \log_3(x) = 2$$
 is:

$$(A) \frac{1}{7}$$

(B)
$$\frac{1}{8}$$

(C)
$$\frac{\sqrt{37}-1}{2}$$

(D)
$$\frac{\sqrt{33} - 1}{2}$$

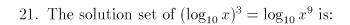
(A)
$$\frac{1}{7}$$
 (B) $\frac{1}{8}$ (C) $\frac{\sqrt{37}-1}{2}$ (D) $\frac{\sqrt{33}-1}{2}$ (E) none of these

- 11. The polynomial $x^2 + 3x + 4$ is a factor of $x^4 + 8x^3 + px^2 + qx + 24$ if p and q have values, respectively, of:
 - (A) 20 and 30
- (B) 22 and 34
- (C) 14 and 15
- (D) 38 and 25

- (E) none of these
- 12. The diameter of a circle with radius 3 in is the side of a square. The exact area of the part of the square that lies outside the circle is:
 - (A) $36 9\pi \text{ in}^2$
- (B) 21.87 in^2
- (C) 7.74 in^2 (D) $36 9\pi/2 \text{ in}^2$

- (E) none of these
- 13. If r_1 and r_2 are the roots of the equation $3x^{-2} + 4x^{-1} + 1 = 0$, then $r_1 + r_2 r_1r_2$ is equal to:
 - (A) -1
- (B) -3
- (C) -4
- (D) -7
- (E) 0

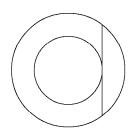
14.	If $f(0) = 4$, $g(x) = 2f(x-2) + 4$, and $h(x) = \sqrt{x^2 + 25}$, then $(h \circ g)(2)$ is equal to:				
	(A) $\sqrt{29}$	(B) 4	(C) 6	(D) 144	(E) 13
15.	The number of ordered pair solutions of the system				
			$2x^3 - 2y = 4$ $9x - 3y = 12$		
	is:				
	(A) 0	(B) 1	(C) 2	(D) 3	(E) 4
16.	The set of all x	satisfying sin ²	$x + \sin x = 2 \text{ with } 0 \le$	$x < 2\pi$ is:	
	(A) $\{\pi/2\}$	(B) $\{\pi/4\}$	(C) $\{\pi/2, 3\pi/2\}$	(D) 1	(E) none of these
17.	thrown into a d	drawer unsorted	pairs of black socks, a . If you were to choo you would get a mate	ose two socks w	
	(A) 1/19	(B) 33/95	(C) 17/19	(D) $1/2$	(E) none of these
18.	manufacturer's water. If the ca	recommended s ar's radiator ca _l that should be	vith a solution of 70% olution for optimal control oacity is 4.2 liters, the drained and replaced vided level is:	poling is 50% are number of li	ntifreeze and 50% ters of the present
	(A) 4.2	(B) 3.2	(C) 2.2	(D) 1.2	(E) .2
19.	In the right tria	angle shown, if	AB = 20, AC = 12, ar	$\operatorname{nd} AD = DB -$	-8, then CD is:
	(A) 14 (B) $12\sqrt{2}$ (C) 8 (D) 9 (E) none of the	ese		D	B
20.	The number of	terms in the sin	aplified expansion of [$(a+3b)^4(a-3b)^4$	$(b)^4]^2$ is:


(A) 6

(B) 7

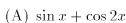
(C) 8

(D) 10

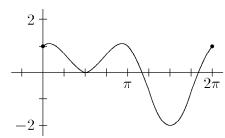

(E) none of these

- $(A) \{1000\}$
- (B) {.001}
- $(C) \{1\}$
- (D) $\{2\}$
- (E) none of these
- 22. In the accompanying figure, the longest straight line that can be drawn on a circular track is 300 feet. The area of the track in square feet is:

- (B) $150^2\pi$
- (C) 300π
- (D) impossible to determine
- (E) none of these



- 23. The sum of three numbers is 70. If the ratio of the first to the second is 3/4 and the ratio of the second to the third is 4/7, then the second number is:
 - (A) 12
- (B) 16
- (C) 20
- (D) 24
- (E) none of these


- 24. The final digit in the number 7^{459} is:
 - (A) 0
- (B) 7
- (C) 9
- (D) 3
- (E) 1

- 25. The solution to the inequality $2x + 1 \le 4x 3 \le x + 7$ is:
 - (A) $x \le 2$ or $x \ge 10/3$
- (B) $2 \le x \le 10/3$ (C) 2 < x < 3
- (D) x > 10/3

- (E) $x \leq 2$
- 26. Consider the following graph of a function defined on [0,1]. The function is given by:

- (B) $\sin x \cos 2x$
- (C) $\cos 2x \sin x$
- (D) $\sin 2x + \cos x$
- (E) $\cos x \sin 2x$

- 27. Each side of triangle ABC has length 24 units. Let D be the foot of the perpendicular dropped from A onto BC, and let E be the midpoint of AD. The length of BE in units is:
 - (A) $\sqrt{210}$
- (B) 15
- (C) $\sqrt{241}$
- (D) $\sqrt{252}$
- (E) 16

	(A) $b^2 - 2c$	(B) $2b^2 - 4c$	(C) $3b^2 - 2c$	(D) $b^2 + 2c$	(E) none of these	
29.	The value of x so that $\log_{10} (10 \log_{10} (\log_{10} x^{-10})) = 1$ is:					
	(A) 100	(B) .001	(C) .5	(D) .1	(E) none of these	
30.	James and Wendy can paint a house in three-fourths the time that it takes James working alone. Wendy takes 12 days to paint a house alone. The rate in houses per day at which James paints alone is:					
	(A) 2	(B) 1/2	(C) 4	(D) 1/4	(E) 1/6	
31.	If $f(x) = \sqrt{\frac{x^3}{x^3}}$	$\frac{-3x^2 + 4x - 12}{x(x^2 + 1)}$, then the domai	n of f is:		
	(A) $(-\infty, 0) \cup (-\infty, 0) \cup $	$(3,\infty)$ $(0,3]$	(B) $(0,3]$ (E) $(-\infty,\infty)$	((C) $(-\infty,0) \cup [3,\infty)$	
32.		the other circle.			cle goes through the tween the two circle	
	$(A) \ \frac{\sqrt{3}}{2}$	(B) $\frac{3}{4}$	(C) $\frac{\sqrt{2}}{2}$	(D)	$\frac{2}{3}$ (E) $\frac{1}{2}$	
33.	The solution in	interval notation	n to the inequali	ty x > x - 2 is:	:	
	(A) $(0,2)$ (E) $(-\infty,0) \cup$	$(B) (-\infty, 0)$	$(0) \cup (2, \infty)$	(C) $(1,\infty)$	(D) $(1,2)$	
34.	The solution se	t of $x^2 - \cos x +$	1 = 0 is:			
	(A) $\{-1\}$	(B) {.5}	(C) $\{\sqrt{2}\}$	(D) $\{2\sqrt{2}\}$	(E) none of these	

28. If the roots of $x^2 + bx + c = 0$ are r and s, then $r^2 + s^2$ is equal to:

(A) $4b^2 = 9c$ (B) $2b^2 = 9ac$ (C) $4b^2 = 25ac$ (D) $b^2 = 8ac$ (E) $9b^2 = 2ac$

35. For one root of $ax^2 + bx + c = 0$ to be four times the other root, the coefficients a, b,

and c must be related as follows:

36.	6. A number that when divided by 126 leaves a remainder of 125, when divide	d by 75
	leaves a remainder of 74, when divided by 24 leaves a remainder of 23, an	d when
	divided by 20 leaves a remainder of 19 is:	

(A) 10,421

(B) 11,624

(C) 12,601

(D) 13,714

(E) none of these

37. The distance from the point P=(3,4) to the line ℓ given by the equation x-5y=4is between:

(A) 1 and 2

(B) 2 and 3

(C) 3 and 4

(D) 4 and 5

(E) 5 and 6

38. The number of real solutions of the equation |3x - |2x - 1|| = 1 is:

(A) 0

(B) 1

(C) 2

(D) 3

(E) 4

39. If $p \log_{10} m = b - \log_{10} n$, then m is equal to:

(A) $\frac{10^b}{n}$ (B) $\sqrt{10b}$ (C) $\frac{10^b}{pn}$ (D) $\sqrt{\frac{10^b}{n}}$

(E) none of these

40. The solution in interval notation to the inequality

$$\frac{1}{x} + \frac{1}{x-1} \ge \frac{2}{x-2}$$

is:

(A) $(-\infty, 0) \cup (2/3, 1) \cup (2, \infty)$ (B) $[2/3, 1) \cup (2, \infty)$ (D) $(-\infty, \infty)$ (E) $(0, 2/3] \cup (1, 2)$ (D) $(-\infty, \infty)$

(E) $(0,2/3] \cup (1,2)$

(C) $(0,2/3) \cup (1,2)$

41. The inverse of the function $f(x) = \frac{x+4}{2x-3}$ is:

(A) $f^{-1}(x) = \frac{x+1}{x-3}$ (B) $f^{-1}(x) = \frac{2x-3}{3x+5}$

(C) $f^{-1}(x) = \frac{3x+4}{2x-1}$

(D) $f^{-1}(x) = \frac{x}{x+2}$

(E) $f^{-1}(x) = \frac{x+5}{x}$

- 42. A circle is inscribed inside an equilateral triangle which in turn is inscribed inside another circle. The ratio of the area of the smaller circle to that of the larger circle is:
 - $(A) \ 3:5$

(B) 1:4

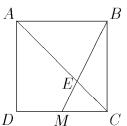
(C) 1:2

- (D) impossible to determine from the information given
- (E) none of these
- 43. Of the following quantities, the only one that is a solution to $x^{15} 3x^{10} + 3x^5 3 = 0$
 - (A) $\sqrt[5]{1 + \sqrt[3]{2}}$ (E) $\sqrt[5]{1 + \sqrt[3]{6}}$
- (B) $\sqrt[5]{1+\sqrt[3]{3}}$ (C) $\sqrt[5]{1+\sqrt[3]{4}}$ (D) $\sqrt[5]{1+\sqrt[3]{5}}$
- 44. If the number $15! = 15 \cdot 14 \cdot 13 \cdot \cdots \cdot 3 \cdot 2 \cdot 1$ ends in k zeros when written in base 12 and h zeros when written in base 20, then k + h equals:
 - (A) 5
- (B) 6
- (C) 7
- (D) 8
- (E) 9
- 45. The number of real solutions of the equation $x^2 xe^x x \ln x + e^x \ln x = 0$ is:
 - (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4

- 46. The solution to the inequality |x-2| < |x-1| < |x| is:

 - (A) x > 1/2 (B) 1/2 < x < 3/2 (C) x > 2 (D) x > 3/2 (E) x > 1

- 47. Given the square ABCD with M the midpoint of \overline{DC} , the ratio of the area of the triangle MEC to that of the quadrilateral AEMD is:



(B) 1:4

(C) 1:5

(D) 2:3

(E) none of these

48. If $\log_a b = 7$ and $\log_b d = -5$, then

$$\log_a \left(\frac{\sqrt[4]{b^3}}{d^2} \right) - \log_b \left(\frac{\sqrt[4]{d^3}}{b^2} \right)$$

is equal to:

- (A) $\frac{7b}{4d}$
- (B) a (C) $\log_a 4 \log_a 3$
- (D) -12
- (E) 81

- 49. The value of $\left(52 + 6\sqrt{43}\right)^{3/2} \left(52 6\sqrt{43}\right)^{3/2}$ is:
 - (A) $158 + \sqrt{43}$
- (B) 828
- (C) $27\sqrt{43} + 426$
- (D) $104\sqrt{43} + 129$

- (E) 652
- 50. The range of the function $f(x) = \frac{\sqrt{x-1}}{x+2}$ is:
 - (A) [0,1)
- (B) $[0, \sqrt{3}/6]$ (C) $[0, \sqrt{2}/5]$ (D) $[0, \infty)$ (E) $(-\infty, \infty)$

Answer Key

1. B	18. D	35. C
2. B	19. D	36. E
3. A	20. E	37. D
4. C	21. E	38. C
5. C	22. B	39. E
6. E	23. C	40. E
7. C	24. D	41. C
8. A	25. B	42. B
9. E	26. A	43. A
10. B	27. D	44. D
11. E	28. A	45. A
12. D	29. D	46. D
13. D	30. D	47. C
14. E	31. C	48. E
15. C	32. A	49. B
16. A	33. C	50. B
17. B	34. E	